TwoLayer Model
From ThermalFluidsPedia
Line 1:  Line 1:  
{{Turbulence Category}}  {{Turbulence Category}}  
  [[Image:Fig4.34.pngthumb400 pxaltVelocity profiles in the turbulent boundary layer on a flat plate: (a) velocity distributions at different instances, (b) 17 superimposed profiles, and (c) timeaveraged profile (Cebeci, 2004; Reprinted with permission from Elsevier)   +  [[Image:Fig4.34.pngthumb400 pxaltVelocity profiles in the turbulent boundary layer on a flat plate: (a) velocity distributions at different instances, (b) 17 superimposed profiles, and (c) timeaveraged profile (Cebeci, 2004; Reprinted with permission from Elsevier)  Velocity profiles in the turbulent boundary layer on a flat plate: (a) velocity distributions at different instances, (b) 17 superimposed profiles, and (c) timeaveraged profile (Cebeci, 2004; Reprinted with permission from Elsevier).]] 
  The above mixing length theory assumes that the turbulent flow takes place within the entire boundary layer thickness. In reality, the turbulent boundary layer can be further divided into two regions (see  +  The above mixing length theory assumes that the turbulent flow takes place within the entire boundary layer thickness. In reality, the turbulent boundary layer can be further divided into two regions (see figure to the right). The first region is viscous sublayer and it occupies less than 1% of the total turbulent boundary layer thickness. The momentum and heat transfer in this region are dominated by viscous shear and heat conduction, respectively. Outside of the viscous sublayer is a full turbulent region which comprises almost the entirety of the turbulent boundary layer. Figure (a) shows the instantaneous velocity profiles in a turbulent boundary layer on a flat plate taken at 17 instances. The 17 superimposed profiles as well as the average profile are shown in Fig. (b) and (c), respectively. It can be clearly seen from figure(c) that the velocity increases sharply in the sublayer near the wall and its change in the second region is fairly insignificant. While the thickness of the turbulent boundary layer increases with increasing ''x'', the viscous sublayer remains at a fairly constant thickness. As the thickness of the turbulent boundary layer increases, the viscous sublayer inhabits a smaller and smaller portion of the entire turbulent boundary layer. Therefore, the mixing length model based on the assumption that the entire turbulent boundary layer is full turbulent flow should be improved by considering the twolayer structure of the turbulent boundary layer. 
  In the twolayer structure of the turbulent boundary layer, the velocity is dominated by viscous shear stress in the sublayer and by turbulent mixing in the fully turbulent region. Near the wall, the shear stress is equal to the shear stress at the wall, i.e., <math>\bar{\tau }_{yx}=\tau _{w}</math>. Thus, eq. (4  +  In the twolayer structure of the turbulent boundary layer, the velocity is dominated by viscous shear stress in the sublayer and by turbulent mixing in the fully turbulent region. Near the wall, the shear stress is equal to the shear stress at the wall, i.e., <math>\bar{\tau }_{yx}=\tau _{w}</math>. Thus, eq. (4) in [[Algebraic Models for Eddy DiffusivityAlgebraic Models for Eddy Diffusivity]] near the wall becomes 
{ class="wikitable" border="0"  { class="wikitable" border="0"  
Line 14:  Line 14:  
{{EquationRef(1)}}  {{EquationRef(1)}}  
}  }  
  where the partial derivative <math>\partial \bar{u}/\partial y</math> has been approximated as <math>d\bar{u}/dy</math> because <math>\bar{u}(\partial \bar{u}/\partial x)\approx 0</math> in the region near the wall. For the viscous sublayer, <math>\varepsilon _{M}=0</math> and eq. (  +  where the partial derivative <math>\partial \bar{u}/\partial y</math> has been approximated as <math>d\bar{u}/dy</math> because <math>\bar{u}(\partial \bar{u}/\partial x)\approx 0</math> in the region near the wall. For the viscous sublayer, <math>\varepsilon _{M}=0</math> and eq. (1) is simplified to: 
{ class="wikitable" border="0"  { class="wikitable" border="0"  
Line 24:  Line 24:  
{{EquationRef(2)}}  {{EquationRef(2)}}  
}  }  
  Equation (  +  Equation (2) can be integrated from the wall to yield 
<math>\int_{0}^{{\bar{u}}}{d\bar{u}}=\int_{0}^{y}{\frac{\tau _{w}}{\mu }dy}</math>  <math>\int_{0}^{{\bar{u}}}{d\bar{u}}=\int_{0}^{y}{\frac{\tau _{w}}{\mu }dy}</math>  
Line 58:  Line 58:  
{{EquationRef(5)}}  {{EquationRef(5)}}  
}  }  
  is shear velocity or friction velocity, eq. (  +  is shear velocity or friction velocity, eq. (3) becomes 
{ class="wikitable" border="0"  { class="wikitable" border="0"  
Line 69:  Line 69:  
}  }  
which is the velocity distribution in the viscous sublayer.  which is the velocity distribution in the viscous sublayer.  
  For the fully turbulent region, <math>\varepsilon _{M}\gg \nu </math> and eq. (  +  For the fully turbulent region, <math>\varepsilon _{M}\gg \nu </math> and eq. (1) is simplified to: 
{ class="wikitable" border="0"  { class="wikitable" border="0"  
Line 89:  Line 89:  
{{EquationRef(8)}}  {{EquationRef(8)}}  
}  }  
  Substituting eq. (4  +  Substituting eq. (4), eq. (8) can be nondimensionalized into 
{ class="wikitable" border="0"  { class="wikitable" border="0"  
Line 99:  Line 99:  
{{EquationRef(9)}}  {{EquationRef(9)}}  
}  }  
  In order to integrate eq. (  +  In order to integrate eq. (9), we must know the thickness of the viscous sublayer. For the case without blowing or suction on the wall and zeropressure gradient, we can choose <math>y^{+}=10.8</math> as the dimensionless thickness of the viscous sublayer. Therefore, eq. (9) can be integrated from <math>y^{+}=10.8</math>, i.e., 
{ class="wikitable" border="0"  { class="wikitable" border="0"  
Line 119:  Line 119:  
{{EquationRef(11)}}  {{EquationRef(11)}}  
}  }  
  where the von Kármán’s constant is taken as <math>\kappa =0.4</math>. Equation (  +  where the von Kármán’s constant is taken as <math>\kappa =0.4</math>. Equation (11) is often referred to as the law of the wall. It can also be approximated into the following power law form: 
{ class="wikitable" border="0"  { class="wikitable" border="0"  
Line 129:  Line 129:  
{{EquationRef(12)}}  {{EquationRef(12)}}  
}  }  
  which fits into eq. (  +  which fits into eq. (11) at least up to <math>y^{+}=1500</math>. 
The twolayer model can then be summarized as  The twolayer model can then be summarized as  
Line 142:  Line 142:  
{{EquationRef(13)}}  {{EquationRef(13)}}  
}  }  
  [[Image:Fig4.35.pngthumb400 pxalt=Comparison of twolayer model and experimental results   +  [[Image:Fig4.35.pngthumb400 pxalt=Comparison of twolayer model and experimental results  Comparison of twolayer model and experimental results.]] 
  Figure  +  Figure to the right shows the comparison between the above twolayer model and experimental results obtained using water and air. The Reynolds number shown in the figure is the momentum thickness Reynolds number defined as <math>\operatorname{Re}_{\delta _{2}}=U_{\infty }\delta _{2}/\nu </math>, where <math>\delta _{2}=0.664\sqrt{\nu x/U_{\infty }}</math> is the momentum thickness. It can be seen that the results from the twolayer model agreed with the experimental results very well except at the outer region of the turbulent boundary layer. In addition, the agreement between eq. (13) and the experimental results is also not very good in the region near <math>y^{+}=10.8</math>. Some researchers suggested there is a buffer region (<math>5<y^{+}<30</math>) between the sublayer and the fully turbulent region and the velocity profile in the buffer region is <ref name="BK2003">Bejan, A., and Kraus, A.D., 2003, Heat Transfer Handbook, John Wiley & Sons, Hoboken, NJ.</ref>: 
{ class="wikitable" border="0"  { class="wikitable" border="0" 
Revision as of 02:17, 21 July 2010
External Turbulent Flow/Heat Transfer 
The above mixing length theory assumes that the turbulent flow takes place within the entire boundary layer thickness. In reality, the turbulent boundary layer can be further divided into two regions (see figure to the right). The first region is viscous sublayer and it occupies less than 1% of the total turbulent boundary layer thickness. The momentum and heat transfer in this region are dominated by viscous shear and heat conduction, respectively. Outside of the viscous sublayer is a full turbulent region which comprises almost the entirety of the turbulent boundary layer. Figure (a) shows the instantaneous velocity profiles in a turbulent boundary layer on a flat plate taken at 17 instances. The 17 superimposed profiles as well as the average profile are shown in Fig. (b) and (c), respectively. It can be clearly seen from figure(c) that the velocity increases sharply in the sublayer near the wall and its change in the second region is fairly insignificant. While the thickness of the turbulent boundary layer increases with increasing x, the viscous sublayer remains at a fairly constant thickness. As the thickness of the turbulent boundary layer increases, the viscous sublayer inhabits a smaller and smaller portion of the entire turbulent boundary layer. Therefore, the mixing length model based on the assumption that the entire turbulent boundary layer is full turbulent flow should be improved by considering the twolayer structure of the turbulent boundary layer.
In the twolayer structure of the turbulent boundary layer, the velocity is dominated by viscous shear stress in the sublayer and by turbulent mixing in the fully turbulent region. Near the wall, the shear stress is equal to the shear stress at the wall, i.e., . Thus, eq. (4) in Algebraic Models for Eddy Diffusivity near the wall becomes

where the partial derivative has been approximated as because in the region near the wall. For the viscous sublayer, and eq. (1) is simplified to:

Equation (2) can be integrated from the wall to yield
i.e.,

Introducing the wall coordinate

where

is shear velocity or friction velocity, eq. (3) becomes

which is the velocity distribution in the viscous sublayer. For the fully turbulent region, and eq. (1) is simplified to:

which can be rewritten to the following format using the Prandtl’s mixing length model

Substituting eq. (4), eq. (8) can be nondimensionalized into

In order to integrate eq. (9), we must know the thickness of the viscous sublayer. For the case without blowing or suction on the wall and zeropressure gradient, we can choose y^{ + } = 10.8 as the dimensionless thickness of the viscous sublayer. Therefore, eq. (9) can be integrated from y^{ + } = 10.8, i.e.,

which can be integrated to yield

where the von Kármán’s constant is taken as κ = 0.4. Equation (11) is often referred to as the law of the wall. It can also be approximated into the following power law form:

which fits into eq. (11) at least up to y^{ + } = 1500.
The twolayer model can then be summarized as

Figure to the right shows the comparison between the above twolayer model and experimental results obtained using water and air. The Reynolds number shown in the figure is the momentum thickness Reynolds number defined as , where is the momentum thickness. It can be seen that the results from the twolayer model agreed with the experimental results very well except at the outer region of the turbulent boundary layer. In addition, the agreement between eq. (13) and the experimental results is also not very good in the region near y^{ + } = 10.8. Some researchers suggested there is a buffer region (5 < y^{ + } < 30) between the sublayer and the fully turbulent region and the velocity profile in the buffer region is ^{[1]}:

Cite error:
<ref>
tags exist, but no <references/>
tag was found